Neural Outfit Recommendation
DAPA Workshop @ WSDM 2019

Maarten de Rijke
February 15, 2019

University of Amsterdam

derijke@uva.nl

x(X x



Based on joint work with Jun Ma, Pengjie Ren, Yujie Lin, Zhaochun Ren, and Zhumin
Chen



Background

Outfit recommendation
Fashion recommendation machine

Some results

Conclusion




Big uptake and injection of energy in the field

e Learning to match

Learning to rank

Content understanding — text, image, video, ...

Behavior understanding



The need to take stock, repeatedly

Quickly building up a rich body of knowledge

e Li and Xu (2013) — Semantic matching in search

e Onal et al. (2018) — Neural information retrieval: At the end of the early years
e Mitra and Craswell (2019) — An introduction to neural information retrieval

o Lietal (20XX)-...



Rough edges

Lin (2018) — The Neural Hype and Comparisons Against Weak Baselines

e Everyone is trying to win

e ‘“demonstrating that a new method beats previous methods on a given task or
benchmark”

e Often, our baselines are weak



Rough edges

How to improve ourselves

e Compare apples to apples
e Work on insights — reasons for success, reasons for failure

e Use reference baselines



Rough edges

How to improve ourselves

Compare apples to apples

Work on insights — reasons for success, reasons for failure

Use reference baselines

Share everything

Use reference implementations

e Engage with product owners for additional eyes and checks

Win in different ways — task, constraints, metrics, ...
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Outfit recommendation

A different task, with a twist
Fashion recommendation — increased attention

Outfit recommendation — given a top (i.e., upper garment), recommend a list of

bottoms (e.g., trousers or skirts) from a large collection that best match the top, and
vice versa

e Allow users to provide some descriptions as conditions that the recommended
items should accord with as much as possible



Unpacking the task

Two main challenges

e visual understanding — aims to extract effective visual features

e visual matching — aims to model a human notion of compatibility to compute a
match between fashion items
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Unpacking the task

Two main challenges

e visual understanding — aims to extract effective visual features

e visual matching — aims to model a human notion of compatibility to compute a
match between fashion items

Typically, visual understanding and matching conducted based on recommendation loss
alone

e Supervision signal is just whether two given items are matched or not and no
supervision is available to directly connect the visual signals of the fashion items

e Can we come up with a sense of esthetics?
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Fashion recommendation machine

Lin et al. (2019) — Improving Outfit Recommendation with Co-supervision of Fashion
Generation

@ Neural co-supervision learning framework, FARM, for outfit recommendation that
simultaneously yields recommendation and generation

® Layer-to-layer matching mechanism as a bridge between generation and
recommendation — improves recommendation by leveraging generation features
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FARM architecture

Thave a top like this:

ﬁishion Generator

Top Encoder

Please recommend
d me a skinny
regular jeans.

Bottom Generator

Matching Score

Vo

\Fashion Recommender

Bottom Encoder

Generated jeans

I I,

Candidate jeans
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FARM architecture

For the fashion generator

e Use CNN as top encoder to extract visual features from top image I,
e Learn semantic representation for bag-of-words vector d of bottom description

e Use variational transformer to learn mapping from bottom distribution to Gaussian
distribution based on visual features of I; and semantic representation of d

e Sample a random vector from Gaussian distribution and input it to a DCNN (as
bottom generator) to generate bottom image |, that matches I, and d

e Explicitly forces top encoder to encode more aesthetic matching information into

visual features
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FARM architecture

For the fashion recommender

e Also employs CNN as bottom encoder to extract visual features from candidate
bottom image I,
e Evaluate matching score between I, and (I, d) pair from three angles

@ Visual matching between I and I,

@® Description matching between I, and d

© Layer-to-layer matching between I, and | , which leverages generation information
to improve recommendation
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FARM architecture

FARM jointly trains the fashion generator and fashion recommender

Three types of loss

@ Generation loss (visual + textual)
® Loss based on ELBO
©® Recommendation loss (like BPR)
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A sample of results

FashionVC and ExpFashion datasets sampled from Polyvore online community

4-tuples (top, top description, bottom, bottom description)
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Bake-off

Table 2: Recommendation results on FashionVC and Exp-
Fashion datasets (%).

FashionVC
Top Bottom
Method AUC MRR AUC MRR
LR 48.7 45 464 4.4
IBRy 52.8 61 629 103

BPR-DAE; 629 86 702 109
DVBPR, 64.6 91 769 13.0

FARM 71.2° 12.6* 77.8 15.3*
ExpFashion
Top Bottom
Method AUC MRR AUC MRR
LR 50.5 54 484 4.4
IBR, 561 71 689 120

BPR-DAE; 730 123 799 147

DVBPR, 824 185 837 154

FARM 85.2° 25.1% 88.4" 24.3"
The superscript * indicates that FARM significantly outperforms
DVBPRy, using a paired t-test with p < 0.05.

19



Co-supervision learning

Table 3: Analysis of co-supervision learning. Recommenda-
tion results on the FashionVC and ExpFashion datasets (%).

FashionVC
Top Bottom
Method AUC MRR AUC MRR
FARM-G  54.8 84 609 9.8
FARM-R  68.0 98 772 128
FARM 71.2% 12.6* 77.8 15.3"
ExpFashion
Top Bottom
Method AUC MRR AUC MRR
FARM-G 644 142 724 213
FARM-R 823 18.9  84.2 15.2
FARM 852 25.1° 88.4" 24.3"

The superscript * indicates that FARM significantly outperforms

FARM-R, using a paired t-test with p < 0.05.
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Layer-to-layer

Table 4: Analysis of layer-to-layer matching. Recommenda-
tion results on the FashionVC and ExpFashion datasets (%).

FashionVC

Top Bottom
Method AUC MRR AUC MRR

FARM-WL  59.8 7.6 678 8.2
FARM 71.2° 12.6" 77.8° 15.3"

ExpFashion

Top Bottom
Method AUC MRR AUC MRR

FARM-WL  68.6 99 743 103
FARM 85.2° 25.1* 884" 24.3"

The superscript * indicates that FARM significantly outperforms
FARM-WL, using a paired t-test with p < 0.05.
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Some samples: Real vs generated

Generated Real Generated Real Generated Real Generated
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(b) Bottom generation.

Figure 3: Comparison between the real and generated im-

ages.
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Some samples: Recommendations
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jeans

Figure 4: Case studies of recommendation. The items high-
lighted in the red boxes are the positive ones.
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Some samples: Real vs generated
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Figure 5: Case studies of generation. Each case is in the form:
“given description + given item = generated item”.
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What have we done?

Outfit recommendation

e Visual understanding

e Visual matching

Proposed a co-supervision learning framework, FARM

e For visual understanding, FARM captures more aesthetic characteristics with
supervision of generation learning

e For visual matching, FARM incorporates layer-to-layer matching mechanism to
evaluate matching score of candidate and generated items at different neural layers

26



What should we do next?

Effectiveness of generated images to explain the recommendations?

Improvement in quality of generated images leads to improvement in
recommendations?

How to recommend complete outfits?

27



Playing the winning game

How to improve ourselves

e Compare apples to apples
e Work on insights — reasons for success, reasons for failure
e Use reference baselines

e Share everything

e Use reference implementations
e Engage with product owners for additional eyes and checks
e Win in different ways — task, constraints, metrics, ...
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