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Neural IR

Big uptake and injection of energy in the field

• Learning to match

• Learning to rank

• Content understanding – text, image, video, . . .

• Behavior understanding

• . . .
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The need to take stock, repeatedly

Quickly building up a rich body of knowledge

• Li and Xu (2013) – Semantic matching in search

• Onal et al. (2018) – Neural information retrieval: At the end of the early years

• Mitra and Craswell (2019) – An introduction to neural information retrieval

• Li et al. (20XX) – . . .
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Rough edges

Lin (2018) – The Neural Hype and Comparisons Against Weak Baselines

• Everyone is trying to win

• “demonstrating that a new method beats previous methods on a given task or

benchmark”

• Often, our baselines are weak
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Rough edges

How to improve ourselves

• Compare apples to apples

• Work on insights – reasons for success, reasons for failure

• Use reference baselines

• Share everything

• Use reference implementations

• Engage with product owners for additional eyes and checks

• Win in different ways – task, constraints, metrics, . . .
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Outfit recommendation

A different task, with a twist

Fashion recommendation – increased attention

Outfit recommendation – given a top (i.e., upper garment), recommend a list of

bottoms (e.g., trousers or skirts) from a large collection that best match the top, and

vice versa

• Allow users to provide some descriptions as conditions that the recommended

items should accord with as much as possible
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Unpacking the task

Two main challenges

• visual understanding – aims to extract effective visual features

• visual matching – aims to model a human notion of compatibility to compute a

match between fashion items

Typically, visual understanding and matching conducted based on recommendation loss

alone

• Supervision signal is just whether two given items are matched or not and no

supervision is available to directly connect the visual signals of the fashion items

• Can we come up with a sense of esthetics?
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Fashion recommendation machine

Lin et al. (2019) – Improving Outfit Recommendation with Co-supervision of Fashion

Generation

1 Neural co-supervision learning framework, FARM, for outfit recommendation that

simultaneously yields recommendation and generation

2 Layer-to-layer matching mechanism as a bridge between generation and

recommendation – improves recommendation by leveraging generation features
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FARM architecture
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FARM architecture

For the fashion generator

• Use CNN as top encoder to extract visual features from top image It

• Learn semantic representation for bag-of-words vector d of bottom description

• Use variational transformer to learn mapping from bottom distribution to Gaussian

distribution based on visual features of It and semantic representation of d

• Sample a random vector from Gaussian distribution and input it to a DCNN (as

bottom generator) to generate bottom image Ig that matches It and d

• Explicitly forces top encoder to encode more aesthetic matching information into

visual features
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FARM architecture

For the fashion recommender

• Also employs CNN as bottom encoder to extract visual features from candidate

bottom image Ib

• Evaluate matching score between Ib and (It,d) pair from three angles

1 Visual matching between Ib and It
2 Description matching between Ib and d

3 Layer-to-layer matching between Ib and Ig, which leverages generation information

to improve recommendation
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FARM architecture

FARM jointly trains the fashion generator and fashion recommender

Three types of loss

1 Generation loss (visual + textual)

2 Loss based on ELBO

3 Recommendation loss (like BPR)
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A sample of results

FashionVC and ExpFashion datasets sampled from Polyvore online community

4-tuples (top, top description, bottom, bottom description)
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Bake-off
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Co-supervision learning
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Layer-to-layer
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Some samples: Real vs generated
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Some samples: Recommendations

23



Some samples: Real vs generated
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What have we done?

Outfit recommendation

• Visual understanding

• Visual matching

Proposed a co-supervision learning framework, FARM

• For visual understanding, FARM captures more aesthetic characteristics with

supervision of generation learning

• For visual matching, FARM incorporates layer-to-layer matching mechanism to

evaluate matching score of candidate and generated items at different neural layers
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What should we do next?

Effectiveness of generated images to explain the recommendations?

Improvement in quality of generated images leads to improvement in

recommendations?

How to recommend complete outfits?
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Playing the winning game

How to improve ourselves

• Compare apples to apples

• Work on insights – reasons for success, reasons for failure

• Use reference baselines

• Share everything

• Use reference implementations

• Engage with product owners for additional eyes and checks

• Win in different ways – task, constraints, metrics, . . .
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