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This talk gives a high-level review of
matching technologies in search and
recommendation
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Matching vs
Classification and Regression

Matching model: f(x, y)
Classification and regression models: f(x)

Matching can be viewed as special case of
classification and regression

But, there are also differences

Features need to be carefully designed to
represent the interactions between inputs

x and y



Matching and Ranking

Matching model: f(x,y)
Ranking model: g(x,y)
In search and recommendation:

Matching models can be features of ranking
model

Ranking model is more ‘content-agnostic’ than
matching models, its features = BM25, PageRank

Sometimes, matching model and ranking model
are combined and trained together with
pairwise loss



Learning to Rank

* Pointwise loss: L(f(x,y),r)

* Pairwise loss: L(f(x,y1), f(x,v,),7, 1)
* Listwise loss:

L(f(XJY1):f(x'y2)'”'f(nym)!rl'rZ'"'rm)

* Pairwise approach and listwise approach work
oetter than pointwise approach

* Pairwise approach is more widely used
 Sometimes listwise approach works best



Text Matching and Entity Matching

* Matching between two sets of objects

* Text matching

— Order exists between objects in each set (i.e.,
words in each sentence)

— E.g., query title matching in search

* Entity matching
— No order exists between objects in each set
— E.g., user item matching in recommendation



Matching in Search

Text matching: query-title matching
Lexical matching is more important
Asymmetric matching: query to title (document)

Query can consist of multiple phrases (i.e., partial
order)

Query term importance may need to be
considered

E.g., “talk geoffrey hinton deep learning” = “Prof.
Hinton’s Lecture at University of Toronto on Deep
Learning”



Matching in Question Answering

Text matching: question-answer matching
Semantic matching is more important
Asymmetric matching: question to answer

E.g., “how far is sun from earth” = “distance
between sun and earth”



Matching in Paraphrasing

Text matching: sentence-sentence matching
Semantic matching is more important
Symmetric matching: text to text

E.g., “Harry Potter 47, v.s.
“Harry Potter and the Goblet of Fire”

E.g., “Harry Potter 47, v.s. “Harry Potter 5”



Matching in Recommendation

Entity matching: user-item matching

Interactions (similarities) between entities are
useful information

Data is sparse

Hidden structure of interactions (obtained via
matrix factorization) is powerful



Natural Language Processing Problems

e Classification: x = ¢

* Matching: x,y > R

* Sequence-to-Sequence: x — y

* Structured Prediction: x — |x]

e Sequential Decision Process: m:s = a

Li 2017



Natural Language Problems

* C(lassification e Structured Prediction
— Text classification — Sequential labeling
— Sentiment analysis — Semantic parsing

* Matching e Sequential Decision
— Search Process
— Question answering — Multi turn dialogue
— Single-turn dialogue

(retrieval)

* Seguence to Sequence
— Machine translation
— Summarization
— Single-turn dialogue
(generation)
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Overview of Matching

* Deep learning (neural networks) is state-of-
the-art in search and recommendation

e Different network architectures are needed
for different tasks

* There are general framework and principles



Deep Learning

Mimicking human behaviors
using deep learning tools

y
y = f(x)
* max Py (y]x)




Deep Learning Techniques

 Models and Tools
— Feedforward Neural Network
— Convolutional Neural Network
— Recurrent Neural Network
— Sequence-to-Sequence Model
— Attention

* Learning algorithm: back propagation
* Regularization, e.g., dropout, early-stopping



Framework of Matching

Output: MLP

Aggregation: Pooling, Concatenation

Interaction: Matrix, Tensor

Representation: MLP, CNN, LSTM

Input: ID Vectors, Feature Vectors




Typical Architecture for Search and
Question Answering

Match

Input: two sequences of Aggregation
word embeddings

First, create semantic
representations of two Interaction
inputs

Next, make interaction
between the two Representation Representation

representations
Finally, make aggregation I




Typical Architecture for Search

I Match

Aggregation
* Input: two sequences of word

embeddings

* First, make lexical interaction
between two inputs

* Next, make aggregation of
Interaction

Interaction



Typical Architecture for Recommendation

Match

Aggregation

Interaction (2nd Order) Interaction (1%t Order)

Factorization

Machine Embeddings

Representation




Typical Architecture for Recommendation

* Input: two vectors are combined
* First, create embeddings of combined inputs

* Next, make interactions using factorization machine
(1t order feature interaction and 2" order feature
interaction)

* Finally, make aggregation of interactions



Two Principles

* Modular Principle: System consists of different
modules (functions) implemented with different

techniques

— Representation: CNN, RNN, MLP

— Interaction: matrix, tensor

— Aggregation: pooling, concatenation

e Hybrid Principle: Combination of dichotomic
techniques may be necessary
— Deep model and wide model
— Nonlinear model and linear model

— Factorization and non-factorization (2"9 order
interaction and 1%t order interaction)
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Search: DSSM

Posterior probability
computed by softmax
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Huang at al. CIKM 2013



Search: DSSM

Input: two vectors of
letter n-grams

Representations: two

vectors created by Interaction

MLP

Interaction: cos

between two vectors Representation Representation

Alternatives:
representations

created by using
CNN, RNN

MLP MLP




Question Answering: Arc Il

query 1D convolution more 2D convolution
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Hu at al. NIPS 2014



Question Answering: Arc Il

Match
I Value

Input: two sequences of
word embeddings

IMLP

Interaction: matrix
created by 1-D CNN Aggregation Matrix

Aggregation: vector
created by 2-D CNN

Output: value Interaction Matrix
generated by MLP




: DRMM
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Search: DRMM

Match
Input: two sequences of

word embeddings

Interaction: lexical
interaction matrix,
asymmetric Attention

Aggregation: weighted sum
created by MLP

Attention: query term
weighting

Alternative: aggregation by
kernel pooling or max
pooling

Aggregation

Interaction ,
Matrix




Recommendation: NeuMF
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Recommendation: NeuMF

Match

Value

Aggregation

Concatenation Vector

Sigmoid

Vector

Interaction
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Recommendation: NeuMF

Input
— Combined user ID vector and item ID vector
Representation

— Two vectors (embeddings) for factorization and
for neural network respectively

Interaction

— Two vectors obtained by factorization and neural
network

Aggregation

— Value generated by concatenation and sigmoid
function



Recommendation: DeepFM
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Recommendation: DeepFM
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Recommendation: DeepFM

Input
— Combined user feature vector and item feature vector

Representation

— Two shared vectors (embeddings) for factorization
machine and neural network

Interaction

— Two vectors by factorization machine and neural
network

Aggregation

— Value generated by concatenation and sigmoid
function



Recommendation: NFM
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Recommendation: NFM
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Recommendation: NFM

Input

— Combined user feature vector and item feature
vector

Representation
— Vector (embedding) from combined vectors

Interaction

— Vector by factorization machine plus neural
network, as well as values by linear model

Aggregation
— Value generated by linear combination
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Summary

Matching is key technology for search and
recommendation

Text matching and entity matching
Deep learning is state-of-the-art

Framework: input, representation,
Interaction, aggregation, output

Principles: modular and hybrid
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