
Framework and Principles of
Matching Technologies

Hang Li
Bytedance Technology

This talk gives a high-level review of
matching technologies in search and

recommendation

Outline of Talk

• Matching Problem
• Framework and Principles of Matching
• State-of-the-Art Techniques for Matching
• Summary

Matching Problem

! = # $, &

$'(), &'()

$), &), !)
$*, &*, !*

⋯
$', &', !'

Learning
System

Prediction
System

Matching Model

Learning to MatchTraining Data

Test Data
!'()

Matching vs
Classification and Regression

• Matching model: !(#, %)
• Classification and regression models: !(#)
• Matching can be viewed as special case of

classification and regression
• But, there are also differences
• Features need to be carefully designed to

represent the interactions between inputs
and %

Matching and Ranking
• Matching model: !(#, %)
• Ranking model: '(#, %)
• In search and recommendation:
• Matching models can be features of ranking

model
• Ranking model is more ‘content-agnostic’ than

matching models, its features = BM25, PageRank
• Sometimes, matching model and ranking model

are combined and trained together with
pairwise loss

Learning to Rank
• Pointwise loss: !(# $, & , ')
• Pairwise loss: !(# $, &) , # $, &* , '), '*)
• Listwise loss:
!(# $, &) , # $, &* ,⋯#($, &,), '), '*,⋯ ',)

• Pairwise approach and listwise approach work
better than pointwise approach

• Pairwise approach is more widely used
• Sometimes listwise approach works best

Text Matching and Entity Matching
• Matching between two sets of objects
• Text matching
– Order exists between objects in each set (i.e.,

words in each sentence)
– E.g., query title matching in search

• Entity matching
– No order exists between objects in each set
– E.g., user item matching in recommendation

Matching in Search
• Text matching: query-title matching
• Lexical matching is more important
• Asymmetric matching: query to title (document)
• Query can consist of multiple phrases (i.e., partial

order)
• Query term importance may need to be

considered
• E.g., “talk geoffrey hinton deep learning” à “Prof.

Hinton’s Lecture at University of Toronto on Deep
Learning”

Matching in Question Answering

• Text matching: question-answer matching
• Semantic matching is more important
• Asymmetric matching: question to answer
• E.g., “how far is sun from earth” à “distance

between sun and earth”

Matching in Paraphrasing
• Text matching: sentence-sentence matching
• Semantic matching is more important
• Symmetric matching: text to text
• E.g., “Harry Potter 4”, v.s.

“Harry Potter and the Goblet of Fire”
• E.g., “Harry Potter 4”, v.s. “Harry Potter 5”

Matching in Recommendation

• Entity matching: user-item matching
• Interactions (similarities) between entities are

useful information
• Data is sparse
• Hidden structure of interactions (obtained via

matrix factorization) is powerful

Natural Language Processing Problems

• Classification: ! → #
• Matching: !, % → ℛ
• Sequence-to-Sequence: ! → %
• Structured Prediction: ! → [!]
• Sequential Decision Process:): + → ,

Li 2017

Natural Language Problems
• Classification

– Text classification
– Sentiment analysis

• Matching
– Search
– Question answering
– Single-turn dialogue

(retrieval)
• Sequence to Sequence

– Machine translation
– Summarization
– Single-turn dialogue

(generation)

• Structured Prediction
– Sequential labeling
– Semantic parsing

• Sequential Decision
Process
– Multi turn dialogue

Outline of Talk

• Matching Problem
• Framework and Principles of Matching
• State-of-the-Art Techniques for Matching
• Summary

Overview of Matching
• Deep learning (neural networks) is state-of-

the-art in search and recommendation
• Different network architectures are needed

for different tasks
• There are general framework and principles

Deep Learning

! "

! "

max
&
'& ("|!)

" = ,(!)

Mimicking human behaviors
using deep learning tools

Deep Learning Techniques

• Models and Tools
– Feedforward Neural Network
– Convolutional Neural Network
– Recurrent Neural Network
– Sequence-to-Sequence Model
– Attention
– …..

• Learning algorithm: back propagation
• Regularization, e.g., dropout, early-stopping

Framework of Matching

Output: MLP

Aggregation: Pooling, Concatenation

Interaction: Matrix, Tensor

Representation: MLP, CNN, LSTM

Input: ID Vectors, Feature Vectors

Typical Architecture for Search and
Question Answering

• Input: two sequences of
word embeddings

• First, create semantic
representations of two
inputs

• Next, make interaction
between the two
representations

• Finally, make aggregation

Aggregation

Representation

��

Representation

Interaction

Match

Typical Architecture for Search

• Input: two sequences of word
embeddings

• First, make lexical interaction
between two inputs

• Next, make aggregation of
interaction

�

�

Interaction

Aggregation

Match

Typical Architecture for Recommendation

Aggregation

Match

Representation

��

Interaction (2nd Order)

Embeddings

Interaction (1st Order)

Factorization
Machine

Typical Architecture for Recommendation

• Input: two vectors are combined
• First, create embeddings of combined inputs
• Next, make interactions using factorization machine

(1st order feature interaction and 2nd order feature
interaction)

• Finally, make aggregation of interactions

Two Principles
• Modular Principle: System consists of different

modules (functions) implemented with different
techniques
– Representation: CNN, RNN, MLP
– Interaction: matrix, tensor
– Aggregation: pooling, concatenation

• Hybrid Principle: Combination of dichotomic
techniques may be necessary
– Deep model and wide model
– Nonlinear model and linear model
– Factorization and non-factorization (2nd order

interaction and 1st order interaction)

Outline of Talk

• Matching Problem
• Framework and Principles of Matching
• State-of-the-Art Techniques for Matching
• Summary

Search: DSSM

DNN model is used for Web document ranking as follows: 1) to
map term vectors to their corresponding semantic concept vectors;
2) to compute the relevance score between a document and a
query as cosine similarity of their corresponding semantic concept
vectors; rf. Eq. (3) to (5).

More formally, if we denote as the input term vector, as

the output vector, , as the intermediate hidden

layers, as the i-th weight matrix, and as the -th bias term,
we have

(3)

where we use the as the activation function at the output

layer and the hidden layers :

 (4)

The semantic relevance score between a query and a document

 is then measured as:

 ()

 (5)

where and are the concept vectors of the query and the

document, respectively. In Web search, given the query, the
documents are sorted by their semantic relevance scores.

Conventionally, the size of the term vector, which can be

viewed as the raw bag-of-words features in IR, is identical to that
of the vocabulary that is used for indexing the Web document
collection. The vocabulary size is usually very large in real-world
Web search tasks. Therefore, when using term vector as the input,

the size of the input layer of the neural network would be
unmanageable for inference and model training. To address this
problem, we have developed a method called “word hashing” for
the first layer of the DNN, as indicated in the lower portion of

Figure 1. This layer consists of only linear hidden units in which
the weight matrix of a very large size is not learned. In the
following section, we describe the word hashing method in detail.

3.2 Word Hashing
The word hashing method described here aim to reduce the

dimensionality of the bag-of-words term vectors. It is based on
letter n-gram, and is a new method developed especially for our
task. Given a word (e.g. good), we first add word starting and
ending marks to the word (e.g. #good#). Then, we break the word

into letter n-grams (e.g. letter trigrams: #go, goo, ood, od#).
Finally, the word is represented using a vector of letter n-grams.

One problem of this method is collision, i.e., two different
words could have the same letter n-gram vector representation.

Table 1 shows some statistics of word hashing on two
vocabularies. Compared with the original size of the one-hot
vector, word hashing allows us to represent a query or a document
using a vector with much lower dimensionality. Take the 40K-

word vocabulary as an example. Each word can be represented by
a 10,306-dimentional vector using letter trigrams, giving a four-
fold dimensionality reduction with few collisions. The reduction
of dimensionality is even more significant when the technique is

applied to a larger vocabulary. As shown in Table 1, each word in
the 500K-word vocabulary can be represented by a 30,621
dimensional vector using letter trigrams, a reduction of 16-fold in
dimensionality with a negligible collision rate of 0.0044%

(22/500,000).
While the number of English words can be unlimited, the

number of letter n-grams in English (or other similar languages) is
often limited. Moreover, word hashing is able to map the

morphological variations of the same word to the points that are
close to each other in the letter n-gram space. More importantly,
while a word unseen in the training set always cause difficulties in
word-based representations, it is not the case where the letter n-
gram based representation is used. The only risk is the minor
representation collision as quantified in Table 1. Thus, letter n-
gram based word hashing is robust to the out-of-vocabulary
problem, allowing us to scale up the DNN solution to the Web
search tasks where extremely large vocabularies are desirable. We

will demonstrate the benefit of the technique in Section 4.
In our implementation, the letter n-gram based word hashing

can be viewed as a fixed (i.e., non-adaptive) linear transformation,

Figure 1: Illustration of the DSSM. It uses a DNN to map high-dimensional sparse text features into low-dimensional dense features in a semantic space. The
first hidden layer, with 30k units, accomplishes word hashing. The word-hashed features are then projected through multiple layers of non-linear projections.

The final layer’s neural activities in this DNN form the feature in the semantic space.

Huang at al. CIKM 2013

Search: DSSM
• Input: two vectors of

letter n-grams
• Representations: two

vectors created by
MLP

• Interaction: cos
between two vectors

• Alternatives:
representations
created by using
CNN, RNN

Representation

��

Representation

Interaction

Match

MLP MLP

Cos

Value

Vector Vector

Question Answering: Arc II

Hu at al. NIPS 2014

Question Answering: Arc II

• Input: two sequences of
word embeddings

• Interaction: matrix
created by 1-D CNN

• Aggregation: vector
created by 2-D CNN

• Output: value
generated by MLP

�

�

Interaction

Aggregation

Match

2-CNN

Output

MLP

Value

1D-CNN

Matrix

Matrix

Search: DRMM

Figure 2: Architecture of the Deep Relevance Matching Model.

MatchPyramid preserve both exact and similarity match-
ing signals, they do not differentiate these signals but treat
them as equally important. These models focus on learn-
ing the composition of local interactions without addressing
term importance. In particular, the convolutional structures
in ARC-II and MatchPyramid are designed to learn posi-
tional regularities, which may work well under the global
matching requirement but fail under the diverse matching
requirement.(There is more discussion on this in Section 4.)

4. DEEP RELEVANCE MATCHING MODEL
Based on the above analysis, we propose a novel deep

matching model specifically designed for relevance match-
ing in ad-hoc retrieval by explicitly addressing the three
factors described in Section 3. We refer to our model as
a deep relevance matching model (DRMM). Overall, our
model is similar to interaction-focused models rather than
representation-focused models since the latter would inevit-
ably lose the detailed matching signals which are critical for
relevance matching in ad-hoc retrieval.

Specifically, our model employs a joint deep architecture
at the query term level over the local interactions between
query and document terms for relevance matching. We first
build local interactions between each pair of terms from a
query and a document based on term embeddings. For each
query term, we then transform the variable-length local in-
teractions into a fixed-length matching histogram. Based on
the fixed-length matching histogram, we employ a feed for-
ward matching network to learn hierarchical matching pat-
terns and produce a matching score for each query term.
Finally, the overall matching score is generated by aggregat-
ing the scores from each single query term with a term gat-
ing network computing the aggregation weights. The model
architecture is depicted in Figure 2.

More formally, suppose both query and document are rep-
resented as a set of term vectors denoted by q={w(q)

1 , . . . , w
(q)
M }

and d = {w(d)
1 , . . . , w

(d)
N }, where w

(q)
i , i = 1, . . . ,M and

w
(d)
j , j = 1, . . . , N denotes a query term vector and a docu-

ment term vector, respectively, and s denotes the final rel-

evance score, we have

z
(0)
i = h(w(q)

i ⊗ d), i= 1, . . . ,M

z
(l)
i = tanh(W (l)

z
(l−1)
i + b

(l)), i= 1, . . . ,M, l= 1, . . . , L

s =
M∑

i=1

giz
(L)
i

where ⊗ denotes the interaction operator between a query
term and the document terms, h denotes the mapping func-
tion from local interactions to matching histogram, z(l)

i , l =
0, . . . , L denotes the intermediate hidden layers for the i-th
query term, and gi, i = 1, . . . ,M denotes the aggregation
weight produced by the term gating network. W (l) denotes
the l-th weight matrix and b

(l) denotes the l-th bias term,
which are shared across different query terms. Note that we
adopt cosine similarity, a widely used measure for semantic
closeness in neural embeddings [18, 20], as the interaction
operator between each pair of term vectors from a query
and a document. In our work, we assume the term vectors
are learned a priori using existing neural embedding models
such as Word2Vec [18]. We do not learn term vectors in our
deep relevance matching model for the following reasons: 1)
Reliable term representations can be better acquired from
large scale unlabeled text collections rather than from the
limited ground truth data for ad-hoc retrieval; 2) By using
the a priori learned term vectors, we can focus the learning
of our model on relevance matching patterns and consider-
ably reduce the model complexity. In the following, we will
describe the major components of our model, including the
matching histogram mapping, feed forward matching net-
work, and term gating network in detail, and discuss how
they address the three key factors of relevance matching in
ad-hoc retrieval.

Matching Histogram Mapping: The input of our deep
relevance matching model is the local interactions between
each pair of terms from a query and a document. A ma-
jor problem is that the size of local interactions is not fixed
due to the varied lengths of queries and documents. Previ-
ous interaction-based models view the local interactions as
a matching matrix by preserving the sequential term orders

Guo at al. CIKM 2016

Search: DRMM

• Input: two sequences of
word embeddings

• Interaction: lexical
interaction matrix,
asymmetric

• Aggregation: weighted sum
created by MLP

• Attention: query term
weighting

• Alternative: aggregation by
kernel pooling or max
pooling

�

�

Interaction

Aggregation

Match

Matrix

MLP

Value

Cos

Attention

Recommendation: NeuMF

He at al. WWW 2017

Recommendation: NeuMF

Interaction

Aggregation

Match

Representation

��

Representation

Interaction
(Factorization)

Vector

Vector Vector
Element-wise
Product

RepresentationRepresentation

MLP

Vector Concatenation
Sigmoid

VectorVector

Value

Embedding Embedding

Recommendation: NeuMF
• Input
– Combined user ID vector and item ID vector

• Representation
– Two vectors (embeddings) for factorization and

for neural network respectively
• Interaction
– Two vectors obtained by factorization and neural

network
• Aggregation
– Value generated by concatenation and sigmoid

function

Recommendation: DeepFM

(FM) [Rendle, 2010] model pairwise feature interactions as
inner product of latent vectors between features and show
very promising results. While in principle FM can model
high-order feature interaction, in practice usually only order-
2 feature interactions are considered due to high complexity.
As a powerful approach to learning feature representa-

tion, deep neural networks have the potential to learn so-
phisticated feature interactions. Some ideas extend CNN
and RNN for CTR predition [Liu et al., 2015; Zhang et
al., 2014], but CNN-based models are biased to the in-
teractions between neighboring features while RNN-based
models are more suitable for click data with sequential de-
pendency. [Zhang et al., 2016] studies feature representa-
tions and proposes Factorization-machine supported Neural
Network (FNN). This model pre-trains FM before applying
DNN, thus limited by the capability of FM. Feature interac-
tion is studied in [Qu et al., 2016], by introducing a prod-
uct layer between embedding layer and fully-connected layer,
and proposing the Product-based Neural Network (PNN). As
noted in [Cheng et al., 2016], PNN and FNN, like other deep
models, capture little low-order feature interactions, which
are also essential for CTR prediction. To model both low-
and high-order feature interactions, [Cheng et al., 2016] pro-
poses an interesting hybrid network structure (Wide & Deep)
that combines a linear (“wide”) model and a deep model. In
this model, two different inputs are required for the “wide
part” and “deep part”, respectively, and the input of “wide
part” still relies on expertise feature engineering.
One can see that existing models are biased to low- or high-

order feature interaction, or rely on feature engineering. In
this paper, we show it is possible to derive a learning model
that is able to learn feature interactions of all orders in an end-
to-end manner, without any feature engineering besides raw
features. Our main contributions are summarized as follows:

• We propose a new neural network model DeepFM
(Figure 1) that integrates the architectures of FM and
deep neural networks (DNN). It models low-order fea-
ture interactions like FM and models high-order fea-
ture interactions like DNN. Unlike the wide & deep
model [Cheng et al., 2016], DeepFM can be trained end-
to-end without any feature engineering.

• DeepFM can be trained efficiently because its wide part
and deep part, unlike [Cheng et al., 2016], share the
same input and also the embedding vector. In [Cheng et
al., 2016], the input vector can be of huge size as it in-
cludes manually designed pairwise feature interactions
in the input vector of its wide part, which also greatly
increases its complexity.

• We evaluate DeepFM on both benchmark data and com-
mercial data, which shows consistent improvement over
existing models for CTR prediction.

2 Our Approach
Suppose the data set for training consists of n instances
(χ, y), where χ is an m-fields data record usually involving
a pair of user and item, and y ∈ {0, 1} is the associated la-
bel indicating user click behaviors (y = 1 means the user

clicked the item, and y = 0 otherwise). χ may include cat-
egorical fields (e.g., gender, location) and continuous fields
(e.g., age). Each categorical field is represented as a vec-
tor of one-hot encoding, and each continuous field is repre-
sented as the value itself, or a vector of one-hot encoding af-
ter discretization. Then, each instance is converted to (x, y)
where x = [xfield1 , xfield2 , ..., xfiledj , ..., xfieldm] is a d-
dimensional vector, with xfieldj being the vector representa-
tion of the j-th field of χ. Normally, x is high-dimensional
and extremely sparse. The task of CTR prediction is to build a
prediction model ŷ = CTR model(x) to estimate the prob-
ability of a user clicking a specific app in a given context.

2.1 DeepFM
We aim to learn both low- and high-order feature interactions.
To this end, we propose a Factorization-Machine based neu-
ral network (DeepFM). As depicted in Figure 11, DeepFM
consists of two components, FM component and deep com-
ponent, that share the same input. For feature i, a scalar wi

is used to weigh its order-1 importance, a latent vector Vi is
used to measure its impact of interactions with other features.
Vi is fed in FM component to model order-2 feature interac-
tions, and fed in deep component to model high-order feature
interactions. All parameters, including wi, Vi, and the net-
work parameters (W (l), b(l) below) are trained jointly for the
combined prediction model:

ŷ = sigmoid(yFM + yDNN), (1)
where ŷ ∈ (0, 1) is the predicted CTR, yFM is the output of
FM component, and yDNN is the output of deep component.

FM Component

Figure 2: The architecture of FM.
The FM component is a factorization machine, which

is proposed in [Rendle, 2010] to learn feature interactions
for recommendation. Besides a linear (order-1) interactions
among features, FM models pairwise (order-2) feature inter-
actions as inner product of respective feature latent vectors.

1In all figures of this paper, aNormal Connection in black refers
to a connection with weight to be learned; a Weight-1 Connection,
red arrow, is a connection with weight 1 by default; Embedding,
blue dashed arrow, means a latent vector to be learned; Addition
means adding all input together; Product, including Inner- and
Outer-Product, means the output of this unit is the product of two
input vector; Sigmoid Function is used as the output function in
CTR prediction; Activation Functions, such as relu and tanh, are
used for non-linearly transforming the signal;The yellow and blue
circles in the sparse features layer represent one and zero in one-hot
encoding of the input, respectively.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1726

It can capture order-2 feature interactions much more effec-
tively than previous approaches especially when the dataset is
sparse. In previous approaches, the parameter of an interac-
tion of features i and j can be trained only when feature i and
feature j both appear in the same data record. While in FM, it
is measured via the inner product of their latent vectors Vi and
Vj . Thanks to this flexible design, FM can train latent vector
Vi (Vj) whenever i (or j) appears in a data record. Therefore,
feature interactions, which are never or rarely appeared in the
training data, are better learnt by FM.

As Figure 2 shows, the output of FM is the summation of
an Addition unit and a number of Inner Product units:

yFM = ⟨w, x⟩+
d∑

i=1

d∑

j=i+1

⟨Vi, Vj⟩xi · xj , (2)

where w ∈ Rd and Vi ∈ Rk (k is given)2. The Addition
unit (⟨w, x⟩) reflects the importance of order-1 features, and
the Inner Product units represent the impact of order-2 feature
interactions.

Deep Component

Figure 3: The architecture of DNN.

The deep component is a feed-forward neural network,
which is used to learn high-order feature interactions. As
shown in Figure 3, a data record (a vector) is fed into the neu-
ral network. Compared to neural networks with image [He
et al., 2016] or audio [Boulanger-Lewandowski et al., 2013]
data as input, which is purely continuous and dense, the in-
put of CTR prediction is quite different, which requires a
new network architecture design. Specifically, the raw fea-
ture input vector for CTR prediction is usually highly sparse3,
super high-dimensional4, categorical-continuous-mixed, and
grouped in fields (e.g., gender, location, age). This suggests
an embedding layer to compress the input vector to a low-
dimensional, dense real-value vector before further feeding
into the first hidden layer, otherwise the network can be over-
whelming to train.

Figure 4 highlights the sub-network structure from the in-
put layer to the embedding layer. We would like to point out
the two interesting features of this network structure: 1) while
the lengths of different input field vectors can be different,

2We omit a constant offset for simplicity.
3Only one entry is non-zero for each field vector.
4E.g., in an app store of billion users, the one field vector for user

ID is already of billion dimensions.

Figure 4: The structure of the embedding layer

their embeddings are of the same size (k); 2) the latent fea-
ture vectors (V) in FM now serve as network weights which
are learned and used to compress the input field vectors to the
embedding vectors. In [Zhang et al., 2016], V is pre-trained
by FM and used as initialization. In this work, rather than us-
ing the latent feature vectors of FM to initialize the networks
as in [Zhang et al., 2016], we include the FMmodel as part of
our overall learning architecture, in addition to the other DNN
model. As such, we eliminate the need of pre-training by FM
and instead jointly train the overall network in an end-to-end
manner. Denote the output of the embedding layer as:

a(0) = [e1, e2, ..., em], (3)

where ei is the embedding of i-th field and m is the number
of fields. Then, a(0) is fed into the deep neural network, and
the forward process is:

a(l+1) = σ(W (l)a(l) + b(l)), (4)

where l is the layer depth and σ is an activation function. a(l),
W (l), b(l) are the output, model weight, and bias of the l-th
layer. After that, a dense real-value feature vector is gener-
ated, which is finally fed into the sigmoid function for CTR
prediction: yDNN = W |H|+1 · a|H| + b|H|+1, where |H| is
the number of hidden layers.

It is worth pointing out that FM component and deep com-
ponent share the same feature embedding, which brings two
important benefits: 1) it learns both low- and high-order fea-
ture interactions from raw features; 2) there is no need for ex-
pertise feature engineering of the input, as required in Wide
& Deep [Cheng et al., 2016].

2.2 Relationship with Other Neural Networks
Inspired by the enormous success of deep learning in var-
ious applications, several deep models for CTR prediction
are developed recently. This section compares the proposed
DeepFM with existing deep models for CTR prediction.

FNN
As Figure 5 (left) shows, FNN is a FM-initialized feed-
forward neural network [Zhang et al., 2016]. The FM pre-
training strategy results in two limitations: 1) the embedding
parameters might be over affected by FM; 2) the efficiency is
reduced by the overhead introduced by the pre-training stage.
In addition, FNN captures only high-order feature interac-
tions. In contrast, DeepFM needs no pre-training and learns
both high- and low-order feature interactions.

PNN
For the purpose of capturing high-order feature interactions,
PNN imposes a product layer between the embedding layer
and the first hidden layer [Qu et al., 2016]. According to

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1727

Guo at al. IJCAI 2017

Recommendation: DeepFM

Interaction

Aggregation

Match

Representation

��

Interaction
(Factorization)

Vector

Vector

Representation

MLP

Vector

Vector

Concatenation
Sigmoid

Factorization
Machine

Embedding Embedding

Recommendation: DeepFM
• Input
– Combined user feature vector and item feature vector

• Representation
– Two shared vectors (embeddings) for factorization

machine and neural network
• Interaction
– Two vectors by factorization machine and neural

network
• Aggregation
– Value generated by concatenation and sigmoid

function

Recommendation: NFM

He at al. SIGIR 2017

Recommendation: NFM

Aggregation

Match

Representation

��

Interaction
(Factorization)

Values

Embedding

Linear model

Value Linear

Factorization
Machine +
MLP

Interaction

Vector

Value

Recommendation: NFM
• Input
– Combined user feature vector and item feature

vector
• Representation
– Vector (embedding) from combined vectors

• Interaction
– Vector by factorization machine plus neural

network, as well as values by linear model
• Aggregation
– Value generated by linear combination

Outline of Talk

• Matching Problem
• Framework and Principles of Matching
• State-of-the-Art Techniques for Matching
• Summary

Summary

• Matching is key technology for search and
recommendation

• Text matching and entity matching
• Deep learning is state-of-the-art
• Framework: input, representation,

interaction, aggregation, output
• Principles: modular and hybrid

Acknowledgement

I thank Jun Xu, Xiangnan He, Chao Qiao,
Shengxian Wan for valuable discussions with
them on matching technologies

References

• Jun Xu, Xiangnan He, Hang Li, Deep Learning
for Matching in Search and Recommendation,
WSDM 2019 Tutorial

• Hang Li, Deep Learning for Natural Language
Processing, National Science Review,
Perspective, 2017.

Thank you!

lihang.lh@bytedance.com

